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Highlights  Abstract  

▪ The AHBi-LSTM method proposed can 

simultaneously process the bearing raw 

vibration signals according to the positive and 

inverse time-domain sequences, which is more 

conducive to practical industrial applications. 

▪ The Attention mechanism allows the network 

to pay attention to essential features in different 

time steps, improving the fault diagnosis 

accuracy for deep groove ball bearing. 

▪ The AHBi-LSTM method introduces an 

adaptive gating mechanism to manage the 

information flow in the network. The method 

can effectively solve multi-layer networks that 

are difficult to train. 

 Deep groove ball bearings are widely used in rotary machinery. Accurate 

for bearing faults diagnosis is essential for equipment maintenance. For 

common depth learning methods, the feature extraction of inverse time 

domain signal direction and the attention to key features are usually 

ignored. Based on the long short term memory(LSTM) network, this 

study proposes an attention-based highway bidirectional long short term 

memory (AHBi-LSTM) network for fault diagnosis based on the raw 

vibration signal. By increasing the Attention mechanism and Highway, 

the ability of the network to extract features is increased. The 

bidirectional LSTM network simultaneously extracts the raw vibration 

signal in positive and inverse time-domains to better extract the fault 

features. Six deep groove ball bearings with different health conditions 

were used to validate the AHBi-LSTM method in an experiment. The 

results showed that the accuracy of the proposed method for bearing fault 

diagnosis was over 98%, which was 8.66% higher than that of the LSTM 

model. The AHBi-LSTM model is also better than other relevant models 

for bearing fault diagnosis. 
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1.  Introduction 

Deep groove ball bearings are widely used in rotating 

machinery, and the fault diagnosis of bearings is critical to 

ensure high-performance transmission[8]. The fault of the 

transmission system will lead to the suspension of production 

and affect the whole production process[5]. Finding before 

failure occurs is an effective means to ensure the regular 

operation of equipment and avoid economic losses. Bearing 

fault diagnosis has always been regarded as a research hotspot 

in prognosis and health management[18,13]. 

There are mainly two kinds of fault diagnosis methods for 

bearings, one is model-based methods, such as physical model 

[28], Kalman filter [19], strong tracking estimator [31], radial 

basis function neural network [6], and so on. The other is data-

based methods, such as feature extraction[10], support vector 

machine[7], backpropagation neural network[35], and deep 

learning[1]. Model-based methods, such as Li et al.[12] 

proposed an approach based on frequency band entropy (FBE) 

to optimize the intrinsic mode function (IMF) of variational 

mode decomposition (VMD) with rich fault information. To find 

the best description of the fault signal, Bayesian optimization is 

used to infer the structure of the formal specification [11]. 

Model-based methods usually need prior knowledge as  

a research basis, and the cost of learning and application is high. 

Besides, some researchers diagnose bearing faults by fusing the 

features of different sensors [25]. Wang et al. [24] proposed 

combining multi-mode sensor signals to realize a more accurate 

 

Eksploatacja i Niezawodnosc – Maintenance and Reliability 
Volume 25 (2023), Issue 2 

journal homepage: http://www.ein.org.pl 
 

 

Article citation info: 
Li X, Su K, He Q, Wang X, Xie Z. Research on Fault Diagnosis of Highway Bi-LSTM Based on Attention Mechanism.      
Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023: 25(2) http://doi.org/10.17531/ein/162937 

(*) Corresponding author. 

E-mail addresses: 

 

X. Li, (ORCID: 0000-0003-0335-0594) lixueyiphm@163.com, K. Su (ORCID: 0000-0001-9442-4071) sukaiyu11122@163.com,  

Q. He (ORCID: 0000-0002-3998-7039) heqiuhi@126.com, X. Wang (ORCID: 0000-0002-0037-3259) 86370582@qq.com.  

Z. Xie (ORCID: 0000-0002-1104-2375) xiezhijie111@sina.com. 

mailto:heqiuhi@126.com
mailto:86370582@qq.com


Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 2, 2023 

 

and reliable bearing fault diagnosis. 

In recent years, more and more researchers have applied the deep 

learning method to the fault diagnosis of bearings. Compared 

with traditional signal feature extraction methods, which require 

a lot of prior knowledge, deep learning methods such as 

convolutional neural networks (CNN) can automatically extract 

features [17]. Huang et al. [9] proposed a multi-scale cascade 

convolutional neural network (MC-CNN) to enhance the input 

classification information. Tao et al. [21] proposed a fault 

diagnosis method using multi-vibration signals and deep belief 

networks(DBN). This method can adaptively fuse multi-feature 

data and identify various bearing faults. Wu et al. [27] put 

forward an adaptive architecture by integrating the idea of deep 

adaptation networks (DAN) with the simplified lightweight 

model, aiming at enhancing the generalization ability of the 

model. Mao et al. [14] proposed a semi-random subspace 

method with bidirectional gate recurrent units to use fusion 

features for bearing fault diagnosis. Deep learning methods 

based on CNNs and recurrent neural networks (RNN) and semi-

supervised methods have been widely used in bearing fault 

diagnosis [30]. Although these methods have made particular 

progress in bearing fault diagnosis, they can only extract part of 

the feature information. The inverse time-domain sequence 

features are not extracted. Besides, problems such as insufficient 

attention to critical features, and too many training layers are 

difficult to converge need to be solved. 

To make full use of positive and inverse time-domain sequence 

features, this study employs bidirectional long short term 

memory networks (Bi-LSTM) to extract the signal features of 

deep groove ball bearings. Taking the raw vibration signal as 

input, Bi-LSTM can not only use the positive time-domain 

features of the signals but also make full use of the inverse time-

domain features.  

Inspired by the long short term memory networks (LSTM), 

Srivastava proposed Highway Networks to solve multi-layer 

networks difficult to training [20]. The Highway introduces an 

adaptive gating mechanism to manage the information flow 

when training multi-layer networks in deep learning. Zilly et 

al.[34] proposed recurrent Highway networks, which extends 

the LSTM architecture. Zia et al. put forward the residual 

recurrent Highway network and the hierarchical recurrent 

Highway network, which included the network structure, 

alleviating the gradient disappearance problem [32,33]. 

Recurrent Highway Networks has also been well applied in 

speech synthesis and machine translation [26,16]. All these 

results show that the deep neural network combined with the 

Highway network can obtain higher accuracy. 

In 2014, the Google Mind team published a paper that made 

the Attention mechanism famous [15]. Then, in the published 

article by Xu et al. [29], the Attention mechanism was applied in 

the image caption. Since then, the Attention mechanism has been 

widely used in various deep learning tasks [23]. In 2017, Google 

proposed self-Attention mechanisms were used in machine 

translation to learn text representation [22]. Chen et al.[3] 

offered a network based on the Attention mechanism 

autoencoder framework to predict the remaining useful life 

(RUL) value. For the automatic drive, the Attention mechanism 

has also made significant progress in recent research work [4]. 

At present, the Attention mechanism is not widely used in the 

fault diagnosis of bearings. The Attention mechanism allows the 

LSTM network to pay more attention to different features at 

different time steps. 

To make full use of the inverse time-domain sequence 

features, the attention-based Highway bidirectional long short 

term memory (AHBi-LSTM) method proposed in this paper 

uses the Bi-LSTM networks to extract the bearing signals. 

Taking raw vibration signals as input, the Bi-LSTM is used to 

extract the signal features of deep groove ball bearings. 

Simultaneously, the Highway network is used to optimize 

features, which alleviates the deep neural network is difficult to 

train. Besides, the Attention mechanism allows the Bi-LSTM 

network to pay attention to different features at different time 

steps. The highlight of this study are as follows: 

1) The AHBi-LSTM method proposed can simultaneously 

process the bearing raw vibration signals according to the 

positive and inverse time-domain sequences. 

2) The Attention mechanism allows the network to pay 

attention to essential features in different time steps, 

improving the fault diagnosis accuracy of deep groove ball 

bearing. 

3) The AHBi-LSTM method introduces an adaptive gating 

mechanism to manage the information flow in the network. 

This method can effectively solve multi-layer networks 

difficult to training. 

4) The method proposed directly uses the raw vibration signals 

of bearings to extract features without time-frequency 

conversion, which is more conducive to practical industrial 

application. 

The rest of this paper is organized as follows. In Section 2, 

the AHBi-LSTM method was proposed in this paper. The 

theories of the Bi-LSTM, Highway network, and Attention 

mechanism were introduced. In Section 3, taking the deep 

groove ball bearing as an example, experiments are designed to 

validate the effectiveness of the model. In Section 4, the 

experimental results were analyzed and discussed, and the 

effectiveness and superiority were verified by comparing them 

with other advanced neural network methods. The conclusion 

and future research direction are drawn in Section 5. 

2. The Method  

In this study, a hybrid model of Highway Bi-LSTM based on 

Attention mechanism is proposed for fault diagnosis of deep 

groove ball bearings. The traditional LSTM method can only 

extract the signal in the positive time-domain direction. In the 

AHBi-LSTM model, Bi-LSTM simultaneously extracts the 

signal features in the positive and inverse time-domain 

directions. The Attention mechanism is used to enhance the 

attention to essential fault features. Finally, the Highway 

network is used to further optimize the features and improve the 

bearing fault diagnosis effect. The model was calculated 

recursively under Softmax to optimize the fault diagnosis result. 

The overall framework of the AHBi-LSTM method proposed is 

shown in Figure 1 
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Figure 1. General frame diagram of the AHBi-LSTM method. 

2.1. Bidirectional Long Short Term Memory Networks 

The Bi-LSTM uses two LSTM networks simultaneously, one 

forward and one backward, and the two networks are connected 

to the same output layer. The raw bearing vibration signals were 

extracted by the Bi-LSTM network in both positive and negative 

directions. As shown in Figure 2, this structure is characterized 

by the fact that each node of the output layer can fully utilize the 

raw vibration signal information of the deep groove ball bearing. 

Based on this idea, the raw vibration signals are trained to 

diagnose the faults of bearings and judge the severity of the 

faults. 

 
Figure 2. Schematic diagram of Bi-LSTM. 

The LSTM is improved and optimized based on RNN, and  

a long span information transmission channel is added. The 

gating mechanism is introduced to keep the gradient value 

stable, which is convenient for training. First, LSTM receives 

the current moment input𝑥𝑡and the previous moment state 

value ℎ𝑡−1as the total input. After training, four states can be 

obtained, which can be expressed as follow: 

𝑍𝑓 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (1) 

𝑍𝑖 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (2) 

𝑍 = 𝑡𝑎𝑛ℎ(𝑊 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏)  (3) 

𝑍𝑜 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (4) 

where,𝑍𝑓,𝑍𝑖,𝑍𝑜are the total input vector multiplied by the weight 

matrix𝑊𝑓,𝑊𝑖,𝑊𝑜, and then mapped to the value between 0 and 1 

through the sigmoid activation function, as a gated state.𝑍 is the 

total input vector multiplied by the weight matrix 𝑊 and 

converted into a value between -1 and 1 by the tanh activation 

function as the new input data. The internal operation process of 

LSTM can be further expressed as follow: 

𝑐𝑡 = 𝑍𝑓 ⊙ 𝐶𝑡−1 + 𝑍𝑖 ⊙ 𝑍  (5) 

ℎ𝑡 = 𝑍𝑜 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)   (6) 

𝑦𝑡 = 𝜎(𝑊𝑦ℎ𝑡)   (7) 

where, ⊙ represents the multiplication operation of 

corresponding matrix elements. In the LSTM cell,𝑍𝑓is the forget 

gate, which controls what information is forgotten; 𝑍𝑖is the input 

gate, which controls what information is stored in the cell 

state;𝑍𝑜is the output gate, which controls the information that 

needs to be output at this moment, and the final output 𝑦𝑡can be 

obtained by changing ℎ𝑡. The output 𝑦𝑡of Bi-LSTM at one 

moment is not only related to the hidden state ℎ𝑡−1of the 

previous moment, but also related to the hidden state of the last 

moment. Bi-LSTM can achieve more accurate results than the 

LSTM [2]. 

2.2 Highway Unit 

To obtain more accurate fault diagnosis result, the layer number 

of networks becomes deeper and deeper, resulting in network 

training becoming more difficult. The Highway is  

a learnable gate mechanism that divides the data input into two 

parts. One part needs to go through a nonlinear transformation, 

and the other part can be directly crossed through the layer 

without transformation. What data can pass through the network 

is determined by the weight matrix and input data. Under this 

mechanism, some information selectively passes through some 

layers, which reduces the number of training parameters. This is 

the reason why Highway can solve the difficult problem of deep 

network training. The main goal of Highway is to learn the 

proportion of original information that should be retained. It's 

like an information highway. The Highway is trained by the 

stochastic gradient descent (SGD). In a forward neural network 

with L layer, the input 𝑥𝑖can use nonlinear mapping 

transformation 𝐻with parameters 𝑊𝐻to generate output 𝑦𝑖, 

which can be expressed as follow: 

𝑦 = 𝐻(𝑥, 𝑊𝐻)   (8) 

Two nonlinear mapping functions 𝑇 and 𝑪 are added to the 

Highway based on the above forward neural network, and the 

output 𝑦 of the Highway is calculated as follow: 

𝑦 = 𝐻(𝑥, 𝑊𝐻) × 𝑇(𝑥, 𝑊𝑇) + 𝑥 × 𝐶(𝑥, 𝑊𝐶)          (9) 

where,𝑇is the transform gate;𝐶 is the carry gate. To facilitate 

calculation and simplify the model, 𝑪 = 𝟏 − 𝑻is defined, then 

the modified Highway can be expressed as follow: 

𝑦 = 𝐻(𝑥, 𝑊𝐻) ⋅ 𝑇(𝑥, 𝑊𝑇) + 𝑥 ⋅ (1 − 𝑇(𝑥, 𝑊1−𝑇))     (10) 

where, y is the final output of Highway. In (10), the dimensions 

of 𝒙,𝒚,𝐻,and 𝑇must be the same. The SGD algorithm is used to 

adjust network parameters as follow: 

𝑊𝑡+1 ← 𝑊𝑡 + 𝜂
1

𝑁
∑ 𝜃(−𝑦𝑛𝑊𝑡𝑥𝑛)(𝑦𝑛𝑥𝑛)𝑁

𝑛=1          (11) 

where, 𝑊is the weight parameter, 𝜂 is the learning rate, N is the 

number of samples for one training, 𝜃 is the network parameter, 

𝑦𝑛is the output, and 𝑥𝑛is the input. 

2.3 Attention mechanism 

The Attention mechanism in deep learning is similar to that in 

the human brain. Its core goal is to give more attention to more 

critical information in the general information. The advantages 

of the Attention mechanism are as follows: on the one hand, it 

helps to enhance the ability of the neural network to focus on 

features, that is, to select features that are more critical to target 

output; On the other hand, Attention mechanism can also be used 

as a resource allocation scheme, so that more computing 

resources can be obtained for more essential tasks. 

The Attention mechanism allocates more attention to 

essential points. In the fault diagnosis of rotating machinery, 

different signal features have different influences. The Attention 
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mechanism is introduced to identify which information is 

essential. In this study, the Attention mechanism is added to the 

next step of the first Bi-LSTM layer, and the input of the 

Attention mechanism is the output of the Bi-LSTM layer, so: 

𝑢𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐴𝐻𝑡 + 𝑏𝐴)  (12) 

𝛼𝑖 =
𝑒𝑥𝑝(𝑢𝑖

𝑇𝑢𝐴)

∑ 𝑢𝑗
𝑇𝑢𝐴

𝑛
𝑗=1

   (13) 

𝑣𝑖 = ∑ 𝛼𝑖𝐻𝑡𝑡     (14) 

where,𝑊𝐴is the weight matrix,𝑏𝐴is the bias value,𝑢𝑖is the hidden 

layer representation of 𝐻𝑡 , and the weight 𝑎𝑖is the similarity 

of 𝑢𝑖with adjacent features 𝑢𝐴.𝑢𝐴uses random initialization and 

dynamically updates during training.𝑣is the output vector of the 

Attention mechanism. 

The self-Attention used in this study calculated the 

correlation between each feature and all other features by using 

the Attention mechanism. The features associated with it had  

a high attention score. Attention scores can be used to get  

a weighted representation and then put them into a feedforward 

neural network to get a new representation, which considers the 

information of the features very well. 

3. Bearing test experiments 

To validate the effectiveness of the AHBi-LSTM method on 

groove bearing fault diagnosis and whether different degrees of 

fault can be effectively distinguished, an experiment of deep 

groove ball bearings was designed. The bearing fault diagnosis 

experiment rig is shown in Figure 3. The test rig comprises  

a 0.75kW three-phase asynchronous motor, motor controller, 

support device, shaft, and bearing seat. The maximum speed of 

the motor is 8000rpm. In this test, the speed was set at 1200rpm. 

The sampling frequency was 19.2kHz, and the sampling time 

was set at 110 seconds with every different health states. In the 

process of vibration signal acquisition, acceleration sensors are 

arranged in the vertical direction of the bearing seat to collect 

vibration signals. 

 
Figure 3. Deep groove ball bearing fault diagnosis experiment rig. 

In this study, the SKF6205 deep groove ball bearing model 

was used to validate the AHBi-LSTM method. The specific 

parameters of SKF6205 are shown in Table 1. Local faults of 

bearings are produced by wire cutting. In this study, five types 

of deep groove ball bearings with different faults were selected 

for testing, among which two kinds of inner ring fault and three 

kinds of outer ring fault. The pictures of the normal bearing and 

bearings with local faults are shown in Figure 4.The groove 

depth of the inner ring faults is 2mm, and the groove width of 

inner ring faults is 2mm and 3mm, respectively. The groove 

depth of the outer ring faults is 1mm, and the groove width of 

the outer ring fault is 3mm, 2mm, and 0.5mm, respectively. The 

specific fault description of deep groove ball bearings is shown 

in Table 2. 

 
Figure 4. The picture of local faults of SKF6205 deep groove 

ball bearings. (a) Normal state bearing (NOR), (b) Inner ring 

fault 1 (IRF1), (c) Inner ring fault 2 (IRF2), (d) Outer ring fault 

1 (ORF1), (e) Outer ring fault 2 (ORF2), (f) Outer ring fault 3 

(ORF3). 

Table 1. Parameters of deep groove ball bearing of SKF6205. 

 

Table 2. Fault description of the deep groove ball bearing. 

Bearing 

health states 

Groove 

width (mm) 

Groove 

depth (mm) 

Category 

label 

Normal (NOR) - - 1 

Inner ring fault 

1 (IRF1) 
2 2 2 

Inner ring fault 

2 (IRF2) 
3 2 3 

Outer ring fault 

1 (ORF1) 
3 1 4 

Outer ring fault 

2 (ORF2) 
2 1 5 

Outer ring fault 

3 (ORF3) 
0.5 1 6 

The raw vibration signals of deep groove ball bearings are 

shown intuitively in Figure 5. For deep groove ball bearings with 

six different health states, the raw vibration signals of bearings 

in health state 1 are close to those in health state 2, and the 

vibration signals in health state 3 are noticeable compared with 

the first two types. By comparing the raw vibration signals in the 

healthy states 2 and 3, it is shown that the narrower the groove 

width of the inner ring fault is, the more stable the raw vibration 

signals are. For healthy state 4, the impact of grooves and balls 

is more serious, and pronounced impact signals can be seen. The 

raw vibration signals in health states 5 and 6 can also see obvious 

impact characteristics. On the one hand, it shows that the larger 

the groove width of the outer ring fault is, the more unstable the 

bearing signal is. On the other hand, it also shows that the outer 

ring fault has a more significant influence on the raw vibration 

signal than the inner ring fault. 

 

parameter value 

Outer ring diameter/mm 52 

Inner ring diameter/mm 25 

Pitch diameter/mm 39 

Rolling body diameter/mm 7.94 

Number of the rolling body 9 
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Figure 5. Raw vibration signals of deep groove ball bearings 

with different health states 

By observing the spectrum chart of different bearing health 

states, the influence of faults on bearing vibration signals can be 

intuitively visualization from the frequency domain. The 

spectrum charts of the 6 different health states are shown in 

Figure 6. The abscissa is the normalized frequency. Normalized 

frequency means that the sampling frequency is set as 1, and the 

other frequencies are expressed as percentages. That is, after 

normalization, frequencies are converted to between [0,1]. 

Normalized frequency enables a uniform standard to be used to 

compare the distribution of various frequencies. Yellow means 

spectral energy is higher, blue means spectral energy is lower. It 

can be seen from the spectrum chart that the larger spectral 

values of normal deep groove ball bearing are more concentrated 

around 0.1. For the fault bearing, the energy is shifted to the high 

frequency. The yellow color on the left side in Figure 6(b) 

becomes lighter because the energy is shifted to the right, 

resulting in a lighter color. The more obvious the shock is, the 

more concentrated in the high-frequency value. For health state 

4, the vibration signal of bearing with noticeable impact can be 

seen, and the normalized frequency value is more concentrated 

around 0.8.  

 

 

 

 
Figure 6. Spectrum chart of six different health conditions. (a) 

Normal state bearing (NOR), (b) Inner ring fault 1 (IRF1), (c) 

Inner ring fault 2 (IRF2), (d) Outer ring fault 1 (ORF1), (e) 

Outer ring fault 2 (ORF2), (f) Outer ring fault 3 (ORF3). 

The AHBi-LSTM method superimposed two Bi-LSTM 

neural networks, with the cell size is 32 and 64, respectively. 

Dropout is used to process the output parameter behind the first 

Bi-LSTM layers to avoid overfitting. Meanwhile, the method 

uses the Attention mechanism to identify essential features. Due 

to the low complexity of the Highway, a multi-layer Highway is 

used to optimize the output feature of Bi-LSTM continuously. In 

this study, the layer number of the Highway network is three 

selected by the experiments. The dense and softmax layers are 

added behind Highway to diagnose the fault severity of deep 

groove ball bearings. The details of the network are shown in 

Table 3. A total of 100 thousand samples were used as the 

training set, and 10 thousand samples as the testing set. There is 

no reused data between the training set and the testing set. The 

test was based on an Asus desktop computer, equipped with an 

i7-10700 CPU and a memory frequency of 2133 MHz, and the 

NVIDIA graphics card was used to increase the calculation 

speed. 

Table 3. Network details of the AHBi-LSTM method. 

Layer Output Shape Parameters 

Input 960, 1 0 

Bidirectional LSTM 960, 64 8704 

Batch Normalization 960, 64 256 

Dropout 960, 64 0 

Attention 960, 64 12288 

Bidirectional LSTM 128 66048 

Highway 128 33024 

Highway 128 33024 

Highway 128 33024 

Batch Normalization 128 512 

Dense 64 8256 

Softmax 6 390 

4. Discussions 

The accuracy values in the training process were extracted, and 

the accuracy curves of the training set and the validation set were 

drawn. After smoothing, the curves were shown in Figure 7. The 

accuracy rate of the training set rose rapidly before the 20th 

epochs, rising to more than 95%, and then rose steadily and 

gradually stabilized. The accuracy rate of the verification set 

increased slowly at the beginning and gradually stabilized after 
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the 50th epochs. The AHBi-LSTM method has a good effect on 

the fault diagnosis of deep groove ball bearings. 

 
Figure 7. Training and validation accuracy curves. 

The confusion matrix is drawn to see the fault diagnosis effect 

of the AHBi-LSTM method for deep groove ball bearings with 

different health states. As shown in Figure 8, the fault diagnosis 

accuracy of deep groove ball bearings in healthy state 4 reaches 

100%, the accuracy of healthy state 3 exceeds 99%, and that of 

other healthy states is all above 97%. It shows that the AHBi-

LSTM method proposed can effectively judge the bearing faults 

and distinguish different fault degrees. 

 
Figure 8. Confusion matrix for deep groove ball bearings with 

different health states. 

To more clearly represent the predicted results of every type of 

deep groove ball bearings, 235 samples of each healthy state of 

bearing were selected for testing. The test results are shown in 

Figure 9. For bearing healthy state 1, three and two samples were 

misjudged as healthy states 2 and 3, respectively. Three samples 

in healthy state 2 were misjudged as healthy state 1. Two 

samples in healthy 3 were misjudged as healthy 2. The bearings 

in health state 4 were entirely judged correctly, which may be 

due to the apparent signal characteristics. Four samples and five 

samples of bearings with health status 5 and 6 were misjudged 

as each other, respectively. The error may be because the bearing 

raw vibration signals of the adjacent healthy states are close. The 

misjudgment rate of the AHBi-LSTM method is low, which 

indicates that the method is effective for the fault diagnosis and 

can distinguish different fault degrees of deep groove ball 

bearings. 

 
Figure 9. Fault diagnosis results of deep groove ball bearings 

with different health states. 

To more clearly demonstrate the fault diagnosis results of the 

AHBi-LSTM method proposed in this study on deep groove ball 

bearings, 50 bearings signals in each health state were selected 

for clustering visualization shown in Figure 10. As shown from 

the figure, each health state bearings are relatively concentrated, 

and clear boundaries can be seen. Individual IRF2 samples are 

closer to IRF1, and this may be due to environmental noise or 

other factors that lead to sample points anomaly. Overall, the 

AHBi-LSTM method has an excellent fault diagnosis effect on 

the faults of deep groove ball bearings. 

 
Figure 10. Clustering visualization of deep groove ball 

bearings with different health states. 

To further validate the effectiveness of the AHBi-LSTM 

method proposed, the method was compared with other relevant 

deep learning methods. In addition to the LSTM networks and 

Bi-LSTM networks, the Attention mechanism and the Highway 

network on Bi-LSTM only compared. The experimental results 

are shown in Table 4.  

Table 4. The accuracy of the AHBi-LSTM method and the other 

methods. 

Methods 1st-fold 2nd-fold 3rd-fold 4th-fold 5th-fold Average 

LSTM 89.46% 89.32% 89.21% 89.72% 90.16% 89.57% 

Bi-LSTM 91.73% 91.70% 91.98% 91.52% 91.43% 91.60% 

Bi-LSTM+Highway 93.54% 93.16% 93.66% 93.75% 93.08% 93.44% 

Bi-LSTM+Attention 95.30% 95.31% 95.38% 95.81% 95.27% 95.41% 

AHBi-LSTM 98.65% 97.79% 98.28% 98.38% 98.03% 98.23% 

 

The results show that both of them have certain 

improvements in the accuracy of the bearing fault diagnosis. 
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Compared with these approximate models, the AHBi-LSTM 

model achieves better fault diagnosis performance for deep 

groove ball bearings. 

5. Conclusions 

To sum up, the AHBi-LSTM method was proposed in this study 

to solve the feature of inverse time-domain signal direction was 

ignored in the fault diagnosis. The Attention mechanism is 

introduced to focus on effective information. The Highway can 

selectively process data to reduce computation. The 

experimental results show that the model is effective for fault 

diagnosis of deep groove ball bearing and judge the fault 

severity. Compared with other methods, the results show that the 

AHBi-LSTM method is more effective for bearing fault 

diagnosis. The author's future research focus on the 

interpretability of fault feature extraction. 
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